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Abstract 

We evaluate the endogenous peer influence of students in one U.S. public University College of Business. In 
particular, we measure the peer effect on student grades. This study utilises an exclusion restriction 
approach similar to De Giorgi et al. (2010) to estimate the endogenous peer effect. Our results support the 
finding that a student’s classroom performance has a significant effect on their peers. Overall, our results 
suggest a negative peer effect. However, we find that the direction and magnitude of the peer effect is 
sensitive to the student’s own average ability and that of their peers. 

JEL classification : A10, A13, A22, C70, Z13 

1. Introduction 

Research has shown that social interactions play an important role in influencing human behaviour. 
Studies on peer effects cover a wide spectrum of social contexts. For example, some analyse the role 
peers have on body weight (Trogdon, et al., 2008), substance abuse (Kawaguchi, 2004) and academic 
performance (Sacerdote, 2001). Our paper focuses on the role peers have on one’s academic 
performance. Social interactions that influence a student’s ability to learn has long been of interest to 
researchers, policy makers, and parents. Researchers have found this question difficult to answer given 
the many environmental variables that can influence student performance. Even when reliable data are 
found there are identification issues that arise in evaluating peer effects. Manski (1993) outlines the 
problem of identification in the literature as the ability of researchers to separate peer effects from 
endogenous, exogenous or correlated effects.1  

Recently, Lee (2007) employing a network interaction strategy shows that with groups of moderate size 
and sufficient size variation identification can be achieved. A number of recent papers have built on 
Lee’s (2007) work (Bramoulle et al., 2010; Boucher et al., 2010) to disentangle endogenous effects from 
correlated effects. The use of group size variation has however been used in the literature with mixed 
results in determining peer effect significance (Ammermueller and Pischke, 2009; Hoxby, 2000). 
Recently, De Giorgi et al. (2010) used an exclusion restriction identification strategy that estimates 
indirect peer effects. The exclusion restriction approach makes use of the causal effect that one group 
has on another in the absence of direct contact. For example, group A may be influenced by group C, 
even though their members never meet, because members of A and C both meet and interact with 
members of group B, who serve as intermediaries of influence. Group C, whose members indirectly 
influence A, is known as the excluded group. De Giorgi et al. (2010) use a set of academic courses 
common to several peer groups to show that indirect peer effects influence a student’s choice of 
college major.  

                                                
1 See Bramoulle et al. (2009) and Hanushek et al. (2003) for an expanded discussion of the issue.  
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In this paper, we evaluate data from a College of Business in a State University located in the southern 
United States. Our analysis consists of measuring the endogenous effect that the average performance 
of one group of peers has on another group of students. We employ an exclusion restriction 
identification approach (De Giorgi et al., 2010). Our estimating strategy is to evaluate the effect that 
one group of students has on another but where there is no shared direct interaction. In our data we 
identify three groups of students, groups A, B and C. One group of students (group A) has taken a 
course with another group of students (group B). A third group of students (group C) has taken a course 
with members of group B. However, group C students have never taken courses with group A. As 
defined earlier, group C is also referred to as the excluded group. The estimating strategy is to measure 
the effect that group C has on group A through group C’s direct interaction with group B. We find that a 
group of students’ grade point average (GPA) is explained by the excluded group’s GPA. Our results 
show that the endogenous peer effects are significant and negative. The construction of our model as 
well as the significance of the endogenous peer effect is consistent with De Giorgi et al. (2010). 
However, the direction of the effect found is contrary to some peer effects studies (De Giorgi et al., 
2010; Hanushek et al. 2003). Nonetheless, Zimmerman (2003), Sacerdote (2001), and Henderson et al. 
(1978) show that the direction of the peer effect may be a function of the interaction between one’s 
own ability and that of peers.  

Our results show that students’ ability plays an important role in explaining the magnitude and 
direction of the peer effect. We find that the excluded group (group C) students who are of below 
average ability indirectly hurt the explained group’s (group A’s) average GPA. However, excluded group 
(group C) students of above average ability pulled up the GPA of students (group A’s) of above average 
ability. It is difficult to derive strong policy implications from these findings since in our dataset course 
selection is not random. However, our results suggest that diversity in a group’s ability works against 
the academic achievement of high ability students (Kim et al., 2008).  

The paper is organised as follows. We first describe the existing literature, then introduce our data, 
outline our identification strategy and present our estimating strategy and our baseline results. We 
then go on to analyse the role of a group’s ability and its effect on the magnitude and direction of the 
peer effect. The final section offers some concluding remarks.  

2. Existing literature 

The literature on student performance is diverse. One branch of this literature has evaluated the effect 
of class size on student achievement. The general hypothesis is that lower student enrolment allows for 
greater access to teachers. Most prior literature has shown that small class sizes positively affect 
student performance (Krueger, 1999; Kokkelenberg et al., 2008). However, there are some studies that 
find no effect (for example Hoxby, 2000). Another branch of research has focused on the effects of peer 
performance on a student’s performance (Boucher et al., 2010; Black et al., 2010, Ammermueller and 
Pischke, 2009; Kang, 2007; Hanushek et al., 2003; Henderson et al., 1978), or evaluates the effects of 
peer abilities on student achievement (Kim et al., 2008; Zimmerman, 2003; Sacerdote, 2001). This paper 
belongs to the latter group. 

Work by Kim et al. (2008) comparing two alternative school systems in South Korea shows that when 
students with similar academic abilities are assigned to the same high school (sorting) this improves the 
average performance of top students as compared to school systems where students are not sorted. 
Furthermore, they find that sorting produces a significant peer effect on top students. However, they 
also find that average and low ability students derive no significant benefit from sorting.  

In a different context, Sacerdote (2001) using data from Dartmouth College shows that random 
assignment of college roommates has a significant effect on student outcomes. This present paper is 
closer in spirit to that of Sacerdote (2001). One difference is that we have a smaller sample from a 
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commuter public regional university that is less selective than Dartmouth. As in Sacerdote (2001), we 
use GPA as our dependent variable and use ACT (American College Testing) scores and high school GPAs 
as measures of innate ability. However, our findings are somewhat different. The reasons are most 
likely due to differences between the two populations. Our sample is more heterogeneous in respect to 
innate abilities, social-economic background and quality of high school. More importantly, our sample is 
much more restrictive. We captured students in one College of Business who have successfully 
completed all degree requirements. To some extent, our estimates probably understate peer effects as 
we were unable to measure the effect that unsuccessful peers may have on student achievement.  

As outlined in Boucher et al. (2010) and Ammermueller and Pischke (2009), an important consideration 
in the literature is distinguishing between various factors of student performance. The various causes 
may be exogenous (influences of peers’ characteristics), endogenous (resulting from interactions within 
the peer group) or from common influences on the peer group (correlated effects) (Manski, 1993). The 
literature uses various strategies to isolate these effects. The research is generally categorised by 
natural experiments (Boozer and Cacciola, 2001; Sacerdote, 2001; Zimmerman, 2003; Kang, 2007), 
quasi-experimental (Carrell et al,. 2009; Hoxby; 2000), fixed effects (Vigdor and Nechyba, 2004; 
Hanushek et al,. 2003) or network studies (Bramoulle et al., 2010; Boucher et al., 2010; De Giorgi et al., 
2010; Lee, 2007). This paper belongs to the latter category. 

3. Data description 

We collected data from a public university’s College of Business located in the southern United States. 
All students in the sample were declared business majors who completed all coursework required for 
graduation. The data were originally collected to evaluate and predict student performance on the 
Business Major Field Test (MFT) exam administered by the Educational Testing Services (ETS). The data 
consist of MFT scores, undergraduate GPA, high school GPA, ACT scores and demographic information. 
The MFT is taken in the last semester of coursework leading to a Bachelors of Science in one of five 
business programmes. The MFT is embedded in the capstone course, which is offered every semester 
and is restricted to graduating seniors. The data consist of six semesters with MFT score information. 
Each student’s MFT score is accompanied with two years of detailed coursework information.  

Table 1A: Descriptive statistics 

 

 

 

 

 

 

 

 

We have detailed grade information on the last two years of study leading to a bachelor’s degree. Table 
1A has descriptive statistics of selected variables in our dataset. Table 1B provides variable definitions 
for those variables reported in Table 1A. Students in their last two years of study had an average GPA of 
3.0. One student completed his last two years of college work with a GPA of 1.3. The average ACT 

 Mean SD Min Max 

Gpa 3.01 0.57 1.3 4 
act_comp 20.79 3.45 12 28 
hs_gpa 3.26 0.53 1.8 4 
White 0.82 0.38 0 1 
Black 0.13 0.34 0 1 
Female 0.52 0.50 0 1 
Age 23.22 3.03 20.6 44.6 
Accounting 0.32 0.47 0 1 
Finance 0.11 0.31 0 1 
Gen Business 0.11 0.32 0 1 
Management 0.24 0.43 0 1 
Marketing 0.23 0.42 0 1 
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composite score is 20.8. On average, students were 23 years of age at the time they completed their 
course requirements leading to a bachelor’s degree in business. The oldest student in the sample is 45 
years of age while the youngest is 21. About 95% of the students in the sample are 26 years old or 
younger. The sample is composed of 52% female and 13% African American students. Roughly, 32% of 
all students in our sample were accounting majors, followed by management (24%). The least popular 
majors were finance and general business with 11% each. 

Table 1B: Variable definitions 

 

  
 

4. Peer groups and identification strategy 

Our dataset identifies two courses that all business students took for credit. The capstone course was 
taken by all business students in their last semester. The second course is a junior level Operations 
Management (OM) course. On average, students took the OM course one semester before their final 
semester. Some 29% took the OM course in their final semester. No student in our database took the 
OM course more than three semesters away from their last. Our dataset contains 22 OM and 15 
capstone sections.  

We propose an identification strategy similar to that outlined in De Giorgi et al. (2010). We group 
students based on class pairings for the OM and capstone course only. We had 322 students in our 
dataset that took these two courses for credit. Each student z chooses a course i and j to fulfil degree 
requirements. Let course i represent OM and j capstone courses. Each student z is then grouped in a 
pair of courses ij. There were 122 unique pairs of ij courses with an average group size of 42.5 students.  

We then identified groups that had direct connections to another and all indirect groups. Because the 
OM course is always taken before the capstone course we paired the peer and the indirect group by 
course j. Each group had a set of peer groups and their respective group of indirect groups. Figure 1 
illustrates this relationship. We generated a total of 5,069 unique three-way group pairings. Each 
pairing had information on the average GPA, percentage of African American, percentage of female, 
average high school GPA, average ACT composite score and average age of students of the two-course 
pair. 

In Figure 1 we can observe that group A and group B share a common course. Similarly, group B and 
group C share a common course. However, group A and the excluded group (group C) do not share a 
common course. The identification strategy outlined in De Giorgi et al. (2010) suggests that if a peer 
effect exists it should be observed indirectly. That is, if group C influences group A it must be through 
group C’s influence on group B. This is the exclusion restriction approach taken in our empirical analysis. 

Variable name Description 

Gpa Average GPA of student i. Last 2 years of college courses. 
act_comp ACT composite score of student i. 
hs_gpa High school GPA of student i. 
White White race dummy. 
Black African American race dummy. 
Female Female gender dummy. 
Age Age at time of MFT exam. 
Accounting Accounting major dummy. 
Finance Finance major dummy. 
Gen Business General Business major dummy. 
Management Management major dummy. 
Marketing Marketing major dummy. 
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Figure 1: Indirect effect of excluded group on group A 

 

The group pairings allows us to control for non-peer effects such as course date, time, instructor, etc. 
However, this setup may overstate the peer effect. First, we are not able to observe non-classroom 
interactions between group A and group C students. For example, marketing students may be members 
of the American Marketing Association. Secondly, some group A students may have taken other courses 
with group C students that we ignored in the construction of three-way pairings. Thirdly, assignment to 
pair courses are quite likely endogenous. Putting the limitations of our dataset aside, we believe that 
our overlapping interaction group and identification strategy provide a compelling case for reducing the 
effect of the reflective problem as outlined in the literature. 

5. Estimating strategy 

The strategy is as follows. There are two courses that all students take. Course i (Operations 
Management) that is taken before course j (capstone course). Both courses are populated by three 
overlapping groups of students. Group A takes course i1 and j1, group B takes course i2 and j1, and 
group C takes course i2 and j2. Group A and group B share the same capstone course j. While, group B 
and group C share the same Operations Management course i. However, no interaction takes place 
between group A and group C. If a peer effect exists, it should be identified indirectly. That is, if group C 
has an influence on group A it must be through the effect group C had on group B.  

We propose the following two-stage estimating equations: 

(1) jjCjCjB uXgpagpa  ,2,21, βββ  

(2) jiiAjBiA uXgpagpa ,,2,21,  ααα  

In the first stage, we estimate the average GPA of group B instrumented by the average GPA of group C 
and group C specific characteristics (XC,j). In the second stage, we estimate the average GPA of group A 
with the fitted GPA of group B and group A’s specific controls (XA,i). If a peer effect exits, then α2 should 
be significantly different from zero.  
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6. Results 

From equations (1) and (2) we produce the regression results reported in Table 2. We show in Column 
(1) the OLS specification for comparison purposes. The OLS results show that the average GPA of peers 
has a significant positive effect on group A. Columns (2) and (3) are our 2SLS specifications. Column (3) 
uses group C’s GPA as an instrument for group B’s GPA. Column (3) includes the full set of instruments. 

Recall that the 2SLS specification tests whether group C influences group A through group C’s effect on 
group B. Columns (2) and (3) show that group C’s influence on group B lead to a negative effect on 
group A’s GPA. We discuss the reason for the negative sign in the next section. However, it is important 
to point out that the effect is significant. That is, our exclusion restriction method supports the 
existence of a peer effect. In column (3) specification, group B’s GPA is estimated (equation (1)) by 
group C’s GPA and group C’s specific characteristics. This lowers the magnitude of the effect only 
slightly. To evaluate the magnitude of peer effect we standardise our estimate as in Ammermueller and 
Pishke (2009). We multiply the first stage fitted variance of the peer group by the peer coefficient and 
divide it by the variance of group A’s GPA. This procures an effect of –0.09. This suggest that a 1 
standard deviation increase in the fitted peer groups GPA lowers group A’s GPA by 0.09 standard 
deviations, where the mean GPA of group A is 2.89 and its variance is 0.02. 

Table 2: Peer effect on group performance 

 

Group A’s specific controls produce coefficients that are consistent with existing literature. Groups that 
are associated with a larger share of African Americans tend to achieve a lower GPA. Groups composed 
of a larger share of female students achieve higher GPAs. Here we find that higher group high school 
GPAs lead to a lower average GPA. However, this is offset by the average composite ACT score of the 
group that has a positive effect on average GPA. Lastly, groups composed of older students on average 
will have higher GPAs.  

Dependent variable:  OLS 2SLS 2SLS 
Group A’s average GPA (1) (2) (3) 

Peer effect:  
Group B’s GPA 

0.292*** –0.218*** –0.199*** 
(0.014) (0.031) (0.027) 

Group A’s characteristics    
Percentage African American –0.307*** –0.289*** –0.290*** 
 (0.033) (0.037) (0.037) 
Percentage female 0.439*** 0.683*** 0.674*** 
 (0.023) (0.029) (0.028) 
Average high school GPA –0.177*** –0.471*** –0.461*** 
 (0.028) (0.035) (0.033) 
Average age 0.020*** 0.030*** 0.030*** 
 (0.003) (0.003) (0.003) 
Average ACT composite score 0.025*** 0.042*** 0.041*** 
 (0.004) (0.005) (0.005) 
Constant 1.407*** 3.130*** 3.066*** 
 (0.143) (0.185) (0.176) 
Observations 5069 5069 5069 
R-sq 0.269 – – 
Shea partial R^2 – 0.254 0.336 
First stage F-test – 1646.8 425.11 
* p < 0.10, ** p < 0.05, *** p < 0.01 (standard errors in parentheses).  
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7. Excluded group ability 

In this section we test the robustness of our results by the type of excluded group (group C’s) ability 
level. We used the specification of Table 2 column (3) as our comparison estimation results. We take 
the average ability of the excluded group (group C) and break it into four categories (bottom 25th 
percentile, bottom half, top half, and top 75th percentile). We produce estimated results of these 
categories in Table 3. Column (1) shows the effect of the excluded group students (group C) from the 
bottom 25th percentile of the ability spectrum, on group A students. Column (2) shows the effects of 
group C students from the bottom 50th percentile of ability, on group A students. Both columns (1) and 
(2) show that low ability excluded group students (group C) have a negative effect on group A’s GPA. 
The effect, while negative, is not significant for high ability excluded group (group C) students (columns 
(3) and (4)).  

The results reported in Table 3 suggest that the negative effect found on our baseline estimation is 
probably driven by low ability excluded group (group C) students. Columns (1) and (2) peer effect is also 
a larger negative number than our baseline model. This suggests that low ability excluded group (group 
C) students drive most of the negative peer effect on group A students. 

Next, we further partition our data to evaluate the effect of the excluded group’s (group C) ability by 
groups A’s ability level. Again, we take the average ACT composite score of group A as the measure of 
ability. Table 4 columns (1) and (2) show the bottom half ability of the excluded group (group C) on the 
bottom half (column (1)) and top half ability group A students (column (2)). Columns (1) and (2) clearly 
show that low ability excluded group (group C) students pull down both low ability and high ability 
group A students. However, the magnitude of the negative effect is larger on higher ability group A 
students.  

Table 3: Peer effects on group performance – by excluded group ability levels 

 Excluded group ability 

 < 25th Percentile Bottom half Top half > 75th percentile 
Dependent variable:  2SLS 2SLS 2SLS 2SLS 
Group A’s average GPA (1) (2) (3) (4) 
Peer effect:  
Group B’s GPA 

–0.210*** –0.215*** –0.020 –0.010 
(0.044) (0.029) (0.043) (0.060) 

Group A’s characteristics    
Percentage African 
American 

–0.077 –0.207*** –0.361*** –0.321*** 
(0.079) (0.051) (0.050) (0.065) 

Percentage female 0.751*** 0.717*** 0.525*** 0.511*** 
 (0.048) (0.034) (0.044) (0.061) 
Average high school 
GPA 

–0.442*** –0.443*** –0.382*** –0.433*** 
(0.067) (0.045) (0.047) (0.061) 

Average age 0.015*** 0.027*** 0.029*** 0.033*** 
 (0.006) (0.004) (0.004) (0.005) 
Average ACT 
composite score 

0.047*** 0.043*** 0.034*** 0.031*** 
(0.010) (0.007) (0.007) (0.008) 

Constant 3.199*** 3.044*** 2.549*** 2.645*** 
 (0.350) (0.230) (0.254) (0.345) 
Observations 1313 2845 2224 1301 
Shea partial R^2 0.493 0.45 0.277 0.277 
First stage F-test 210.66 386.74 141.29 82.12 
* p < 0.10, ** p < 0.05, *** p < 0.01 (Standard errors in parentheses).  
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Columns (3) and (4) consider the effect of the group C students from the top half of the ability spectrum 
on group A students from the bottom (column (3)) and top (column (4)) halves of the ability spectrum. 
Column (3) shows that top half ability excluded group (group C) students pull down bottom half group A 
students. This result is hard to reconcile. One possible explanation may be that high ability group C 
students discourage middle to low ability group B students who in turn discourage low ability group A 
students. Column (4) shows that high ability excluded group (group C) students indirectly influence high 
ability group A students in a positive way. This effect is of the same magnitude as that found in column 
(2), albeit of different signs. 

Table 4: Peer effect on group performance – by excluded group and group A’s ability levels 

 

8. Conclusion 

In this paper, we evaluated peer effects using an exclusion restriction identification approach similar to 
that employed by De Giorgi et al. (2010). Results of this research indicate that student influence on 
peers takes place in the absence of direct contact in a common course. Additionally, in this specific 
setting, our results suggest that the excluded group (group C) affects students indirectly in a negative 
way. The negative effect is primarily driven by the ability type of student groups. Low ability excluded 
group (group C) students had a negative indirect effect on other students. While, high ability excluded 
group (group C) students had a negative impact on low ability students. Finally, high ability excluded 
group (group C) students had a positive influence on other high ability students. Results suggest that 
endogenous peer effects are significant and negative for students with low academic aptitude relative 
to peers. However, we found no significant peer effect for high ability students (group A) among low 

 Excluded group and group A’s ability 

 Group C: bottom half ability Group C: top half ability 
Dependent variable:  
Group A’s average GPA 

Group A: bottom  
half ability 

Group A: top half 
ability 

Group A: bottom  
half ability 

Group A: top half  
ability 

2SLS 2SLS 2SLS 2SLS 
(1) (2) (3) (4) 

Peer effect:  
Group B’s GPA 

–0.099*** –0.343*** –0.224*** 0.334*** 
(0.032) (0.051) (0.062) (0.045) 

Group A’s characteristics    
Percentage African 
American 

–0.466*** 0.548*** –0.646*** 0.198*** 
(0.072) (0.090) (0.078) (0.074) 

Percentage female 0.444*** 1.058*** 0.408*** 0.451*** 
 (0.043) (0.057) (0.056) (0.058) 
Average high school 
GPA 

–0.517*** –0.543*** –0.646*** –0.272*** 
(0.059) (0.071) (0.075) (0.056) 

Average age 0.068*** 0.044*** 0.071*** 0.050*** 
 (0.014) (0.014) (0.016) (0.012) 
Average ACT 
composite score 

–0.021*** 0.086*** –0.016*** 0.056*** 
(0.005) (0.006) (0.006) (0.005) 

Constant 3.841*** 1.993*** 4.504*** 0.109 
 (0.347) (0.405) (0.420) (0.318) 
Observations 1554 1291 1241 983 
Shea partial R^2 0.552 0.391 0.283 0.386 
First stage F-test 316.75 136.95 80.95 101.7 
* p < 0.10, ** p < 0.05, *** p < 0.01 (Standard errors in parentheses)  
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ability peers. Our results support existing literature that find that peer group performance has a 
significant effect on student academic achievement. 

It is difficult to draw policy implications from these types of studies. In particular, work by Manski 
(1993) and more recently Bramoulle et al. (2009) have shown that parsing out the effects of groups on 
individuals is a challenging task. Nonetheless, the present study suggests that there is an intimidation 
factor present whenever low ability students are among high ability students. It suggests that classroom 
diversity may not be an appropriate tool to draw positive GPA externalities from social interactions. 
These results support a sorting strategy as found in Kim et al. (2008). 
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